You might want to integrate a dataset that you discovered and that fits to your own data to verify your results, as a starting point for an integrative study or just to test a new hypothesis for a follow-up study. Integration is the merging of multiple datasets from different sources, like your recently collected data with former data from other owners, resulting in a new, bigger dataset. You can manually integrate data or save time by using automatic integration procedures. This requires the use of a common syntax and terminology right from the start (see Fact-Sheets ‘Collect’ and ‘Describe’). When other authors’ data are re-used, it is fundamental to provide credit to the data creators through a robust data citation practice which works best when data are equipped with a persistent identifier (PID).
Data re-users in general, e.g. modelers or researchers performing integrative or comparative studies.
http://www.dataone.org/education-modules (DataONE - Education Modules)
https://www.dataone.org/best-practices/document-integration-multiple-datasets (DataONE - Integration)
http://www.dcc.ac.uk/sites/default/files/documents/DC%20101%20Transform.pdf (DCC - Digital Curation)
http://ukdataservice.ac.uk/media/104397/data_citation_online.pdf (Economic & Social Research Council)
Recommended citation:
German Federation for Biological Data (2021). GFBio Training Materials: Data Life Cycle Fact-Sheet: Data Life Cycle: Integrate. Retrieved 16 Dec 2021 from https://www.gfbio.org/training/materials/data-lifecycle/integrate.